https://www.halvorsen.blog c

Raspberry Pi
GPIO with Python

Hans-Petter Halvorsen

Free Textbook with lots of Practical Examples

Python for Software
Development

Hans-Petter Halvorsen

Python Software Development

Do you want to learn Software
Development?

| ok || cancel|

https://www.halvorsen.blog

https://www.halv_amming/pvthon/

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

Python .
P : ‘ Python for Science Python for Control
rogramming : : y
and Engineerin , ,
Hans-Petter Halvorsen g g Englneerlng Python for SOftware
Hans-Petter Halvorsen Deve |0pment
Hans-Petter Halvorsen
° ® Hans-Petter Halvorsen
C
o A Python Software Development
https://www.halvorsen.blog

https://www.halvorsen.blog
https://www.halvorsen.blog

https://www.halvorsen.blog

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Contents

Overview of GPIO

LED

P\WM

Push Button/Switch

ADC (Analog to Digital Converter)

TMP36

ThingSpeak (Save Data to a Cloud Service)

SD Card

(the Back)

Raspberry Pi

GPIO Pins

Power Supply (USB C) micro HDMI x 2

Ethernet

https://www.halvorsen.blog c

Raspberry Pl GPIO

Hans-Petter Halvorsen

GPIO

()
3V3 power o o 5V power
GPIO 2 (SDA) o o 5V power
GPIO 3 (SCL) o o Ground
GPIO 4 (GPCLKO) o o GPIO 14 (TXD)
Ground o o GPIO 15 (RXD)
GPIO17 o o GPIO 18 (PCM_CLK)
GPIO 27 o o Ground
GPIO 22 o o GPIO 23
3V3 power o o GPIO 24
GPIO 10 (MOSI) o o Ground
GPIO 9 (MISO) o o GPIO 25
GPIO 11 (SCLK) o o GPIO 8 (CED)
Ground o o GPIO 7 (CE1)
GPIO 0 (ID_SD) o o GPIO 1 (ID_SC)
GPIOS5 o o Ground
GPIO6 © o GPIO 12 (PWMO)
GPIO 13 (PWM1) o o Ground
GPIO 19 (PCM_FS) o o GPIO 16
GPIO 26 o o GPIO 20 (PCM_DIN)
Ground o o GPIO 21 (PCM_DOUT)
N J

A powerful feature of the Raspberry Pi is the GPIO (general-purpose input/output) pins.
The Raspberry Pi has a 40-pin GPIO header as seen in the image

GPIO Features

The GPIO pins are Digital Pins which are either True

(+3.3V) or False (OV). These can be used to turn on/off
LEDs, etc.

The Digital Pins can be either Output or Input.

In addition, some of the pins also offer some other
Features:

e PWM (Pulse Width Modulation)

Digital Buses (for reading data from Sensors, etc.):
 SPI

* 12C

GPIO

3V3 power o

GPIO 2 (SDA) o
GPIO 3 (SCL) o

GPIO 4 (GPCLKO) o

Ground

GPIO 27

o
GPIO 17 o

o
GPIO 22 o

3V3 power o

GPIO 10 (MOSI) o

GPIO 9 (MISO) o
GPIO 11 (SCLK) o

Ground o

GPIO 0 (ID_SD) o
GPIO 5 o

GPIO 6 o
GPIO 13 (PWM1) o

GPIO 19 (PCM_FS) o

GPIO 26 o
Ground o

5V power

5V power

Ground

GPIO 14 (TXD)

GPIO 15 (RXD)
GPIO 18 (PCM_CLK)
Ground

GPIO 23

GPIO 24

Ground

GPIO 25

GPIO 8 (CEO)

GPIO 7 (CE1)

GPIO 1 (ID_SC)
Ground

GPIO 12 (PWMO)
Ground

GPIO 16

GPIO 20 (PCM_DIN)
GPIO 21 (PCM_DOUT)

https://www.halvorsen.blog c

GPIO with Python

Hans-Petter Halvorsen

GPIO Zero

* The GPIO Zero Python Library can be used to communicate

with GPIO Pins

The GPIO Zero Python Library comes preinstalled with the
Raspberry Pi OS (so no additional installation is necessary)

Resources:

https://www.raspberrypi.org/documentation/usage/gpio/p

vthon/

https://pypi.org/project/gpiozero/

https://gpiozero.readthedocs.io/en/stable/

https://egpiozero.readthedocs.io/en/stable/recipes.html

https://www.raspberrypi.org/documentation/usage/gpio/python/
https://pypi.org/project/gpiozero/
https://gpiozero.readthedocs.io/en/stable/
https://gpiozero.readthedocs.io/en/stable/recipes.html

RPi.GPIO

* Rpi.GPIO is a module controlling the GPIO pins on the
Raspberry Pi

* RPi.GPIO is a more “low-level” Python Library than
GPIO Zero. Actually, GPIO Zero is using RPi.GPIO

 The RPi.GPIO Python Library comes preinstalled with
the Raspberry Pi OS (so no additional installation is

necessary)

https://pypi.org/project/RPi.GPIO/

https://pypi.org/project/RPi.GPIO/

https://www.halvorsen.blog

LED

Hans-Petter Halvorsen

Necessary Equipment

Raspberry Pi
Breadboard

LED

Resistor, R = 270}

Wires (Jumper Wires) \

.........................

(/ \ \

..............................

..............................

..............................

..............................
..............................

.........................

Setup and Wiring

Raspberry Pi GPIO Pins

LED Example

L ® ® & & o 0 0 0o 0 e o ¢ o o
L] ® ° ¢ o o 0 o o o | * o 0 * o o
’ FED !
FNmeunor~®a2= Toel 22 3RNRANRRRIRR
— 0 @ ® ° ° 9 ° ° 0 00 ® & 0 U ® ° o 0 0 " " P P e P O -
— @ ® ® @ ° 9 0 0 O 9 O ° O O " " O " O O O S O O O O S YYD
L @ @ 9 0 9 0 0 " O 0 O " S P S P P PSSO PO SNPY PCEY OYO
O ® @& & @ & & & 0 & 0 & 0 0 0 O " O " P O P P O P S SO S YYD
U @ ® © 0 0 5 ° 0 0 0 .—llli".............u—

R=270Q
WL e & & & o 0 ° 0 0 00 ® ©® & ° 9 & O 9 O O O O " O e W
O ® @ @ 9 o 0 0 0 0 0 0 ® © ©® ° ¢ 0 O O o O O O 9 O ° e e D
L e e o ¢ 9 e 0 0 0 0 ® 9 0 0 0 0 0 0 " e e L
L 9 9 9 9 0 0 0 0 0 0 ® ® ® 9 0 ° 0 0 O O O O " O 0 0 0 e D
M ® & @& & & & & ¢ & ¢ o ® ® & & o 0 9 o O " " O " O W e e D
~~~~~~~~~ Srdnteer22RRNAARRRRAR

GND (Pin 32) .

GPIO16 (Pin}‘ /

Breadboard




LED Example

This Example “Runs for ever* from gpiozero import LED
from time import sleep

pin = 16
led = LED(pin)

while True:
led.on ()
sleep (1)
led.off ()
sleep (1)

https://www.raspberrypi.org/documentation/usage/gpio/python/



https://www.raspberrypi.org/documentation/usage/gpio/python/

LED Example

Thonny - /home/pi/Documents/led_ex.py @ 7

File Edit View Run Tools Help
s OB HEEO O
python_ex.py 3¢ | led_ex.py |

1 from gpiozero import LED
2 from time import sleep

4 pin = 16
5
6 I1.ed = LED(pin)
7
5 while True:

9 led.on()
10 sleep(1)
11 led.off()
12 sleep(1)

Shell

Python 3.7.3 (/usr/bin/python3)
>>> %Run led_ex.py

Python 3.7.3 (/usr/bin/python3)
>>> -

Python 3.7.3




LED Example

This example turns a LED on/off 10 times

from gpiozero import LED
from time import sleep

pin = 16
led = LED (pin)

N = 10

for x 1n range (N) :
led.on ()
sleep (1)
led.off ()

sleep (1)



https://www.halvorsen.blog

PWM

Pulse Width Modulation

Hans-Petter Halvorsen



PWWM

PWM is a digital (i.e., square wave) signal that oscillates according to a given frequency and
duty cycle.

The frequency (expressed in Hz) describes how often the output pulse repeats.

The period is the time each cycle takes and is the inverse of frequency.

The duty cycle (expressed as a percentage) describes the width of the pulse within that
frequency window.

e

Period

You can adjust the duty cycle

to increase or decrease the 0%
average "on" time of the
signal. The following diagram 259,

shows pulse trains at 0%,
25%, and 100% duty:

100%




Controlling LED Brightness using PWM

* We've seen how to turn an LED on and off, but how do
we control its brightness levels?

 An LED's brightness is determined by controlling the
amount of current flowing through it, but that requires a
lot more hardware components.

 Asimple trick we can do is to flash the LED faster than
the eye can see!

* By controlling the amount of time the LED is on versus
off, we can change its perceived brightness.

e This is known as Pulse Width Modulation (PWM).

https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-1-digital-input-and-output



https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-1-digital-input-and-output

Controlling LED Brightness using PWM

Below we see how we can use PWM to control the brightness of a LED

https://www.electronicwings.com/raspberry-pi/raspberry-pi-pwm-generation-using-python-and-c



https://www.electronicwings.com/raspberry-pi/raspberry-pi-pwm-generation-using-python-and-c

PWM as “Analog Out”

HIGH (5 volts) s

0.5V
The Raspberry Pi has LOW (0 volts) =i M

no real Analog Out 10%
pins, but we can use a

PWM pin. HIGH (5 volts) mep

PWM can be used to I I I | | | | I 9 5\
control brightness of a LOW (0 volts) = '

LED, control the speed i

of a Fan, control a DC
10%
Motor, etc. HIGH (5 volts) —pr -

LOW (0 volts) =i

90%%




G PIO Ze rO from time import sleep
import numpy as np

from gpiozero import PWMLED

PWM pin = 23

led = PWMLED (pin)

start = 0

stop = 1

step = 0.1

level = np.arange(start, stop, step)

for x in level:
led.value = x
sleep (1)

led.off ()



import time
R P e G P I O import RPi.GPIO as GPIO
I ® # Pin definitions
led pin = 23

# Use "GPIO" pin numbering

PWIVI GPIO.setmode (GPIO.BCM)

# Set LED pin as output
GPIO.setup(led pin, GPIO.OUT)

# Initialize pwm object with 50 Hz and 0% duty cycle
pwm = GPIO.PWM(led pin, 50)
pwm.start (0)

pwm.ChangeDutyCycle (10)
time.sleep (2)
pwm.ChangeDutyCycle (50)
time.sleep (2)
pwm.ChangeDutyCycle (90)
time.sleep (2)

# Stop, cleanup, and exit
pwm.stop ()
GPIO.cleanup ()



https://www.halvorsen.blog c

Push Button

Hans-Petter Halvorsen



Raspberry Pi
Breadboard
Push Button
LED

Resistors, R = 2700, R = 10kQ)

Wires (Jumper Wires)

ooooooooooooooooooooooooo
.........................

..............................
..............................
..............................
..............................
..............................

..............................
..............................
..............................
..............................
..............................

.........................
.........................




»

Lh
~ mmman
maARER
M mMERRR
EERRER
» REERR
® RERER
¢ COH

Setup and Wiring



Push Button/Switch

* Pushbuttons or switches connect two
points in a circuit when you press them.
* You can use it to turn on a Light when
holding down the button, etc. W

XN &

Light

+ —

Switch (On/Off)

Battery




+

w
w
<

Raspberry Pi GPIO Pins

Button Setup

Using external Pull-up Resistor

R = 10kQ

@) ¢ ¢ ¢ o o ¢ 0 4 0 e P e P e e e EEEBEE BTSN
"'BERE - AR R EEEE R E R E R EE
) * * o 0 s s s s s s P e LT

LA I I I B L D L D I B B B B R B R I L B R L L L B

GPIO 16



Pull-up Resistor

45V  When the pushbutton is open (unpressed)
there is a connection between 3.3/5V and
| the DI pin.
Resistor * This means the default state is True (High).
. i * When the button is closed (pressed), the

state goes to False (Low).

Switch j
GND



Pull-up Resistor

High
True/ 6 +3.3/5V False/LOW +3.3/5V

Resistor Resistor ‘

o DI ‘ . DI

Switch l We Push the Button Switch ¢
Open j Closed [
GND




Pull-down/Pull-up Resistor

Why do we need a pull-up or pull-down resistor in the

circuit?

* |f you disconnect the digital I/O pin from everything, it
will behave in an irregular way.

* This is because the input is "floating" - that is, it will
randomly return either HIGH or LOW.

* That's why you need a pull-up or pull-down resistor in
the circuit.



Button Example

EHEE =
- .9

In GPIO Zero the default

configuration for a button is pull-up

from gpiozero import Button
from time import sleep

pin = 16

button = Button (pin)

while True:
1f button.is pressed:
print ("Pressed")
else:
print ("Released")
sleep (1)

https://www.raspberrypi.org/documentation/usage/gpio/python/



https://www.raspberrypi.org/documentation/usage/gpio/python/

Button Example

Thonny - /home/pi/Documents/button_ex.py @ 9:32

File Edit View Run Tools Help

w0 O o

button_ex.py l button_ex2.py ¢ I button_ex3.py ‘ Assistant %
1 from gpiozero import LED, Button 1 A 1
2 from time import sleep The codein
3 button_ex3 py looks
4 pin = 16 good.
5 button = Button(pin) If it is not working as it
6 ) should, then consider
7 Whll? True: . using some general
8 if button.is_pressed: debugging techniques.

9 print("Button Pressed")| o
10 else: Was it helpful or
11 print("Button Released") confusing?
12 sleep(1)

In GPIO Zero, the default
configuration for a button is pull-un

We have wired according to pull-up.
[Sheix | This means:

Button Released
T Button Pressed -> True
Button Pressed

But ton Released Button Not Pressed -> False

Button Released

Button Pressed —H
- -

Python 3.7.3




import time
B UttO n EX 2 import RPi.GPIO as GPIO
°

# Pins definitions
btn pin = 16
Here is the RPi.GPIO Python Library used
# Set up pins
GPIO.setmode (GPIO.BCM)
GPIO.setup (btn pin, GPIO.IN)

. : ] # If button is pushed, light up LED
In RPi.GPIO, the default configuration || try:

for a button is pull-down while True:

1f GPIO.input (btn pin):

] ) print ("Button Released")
We have wired according to pull-up. else:

TTﬂsrneans: print ("Button Pressed")

Button Pressed -> False time.sleep (1)
Button Not Pressed -> True

# When you press ctrl+c, this will be called

finally:
GPIO.cleanup ()



\‘!)I @ >4_| Th Thonny - /home/pi/... ePython Programming...

Python Programming Tutorial: Getting Started with the Raspberry Pi - learn.sparkfun.com - Chromium

@ GPIO - Raspberry PiDoc x | EE] gpiozero — Gpiozero 1.5 x \ #® Python Programming Tt X | +

& > C & learnsparkfun.com/tutc Thonny - /home/pi/Documents/button_ex2.py @ 1:1

File Edit View Run Tools Help

g OB EEEHO O

button_ex.py % | button_ex2.py % | button_ex3.py % |

import time
import RPi.GPIO as GPIO

# Pins definitions
btn_pin = 16

# Set up pins
GPIO.setmode(GPIO.BCM)
GPIO.setup(btn_pin, GPIO.IN)

LCoONOU R WNM

11 # If button is pushed, light up LED
12 try:

13 while True:

14 if GPIO.input(btn_pin):

15 print("Button Released")
16 else:

17 print("Button Pressed")
18 time.sleep(1)

20 # When you press ctrl+c, this will be called
21 finally:
22 GPIO.cleanup()

Shell 3¢

Button Released
Button Released
Button Released
Button Released
Button Released
Button Released
Button Pressed
Button Pressed

Assistant 3

a

v

Python 3.7.3



Button Ex.3

import time
import RPi.GPIO as GPIO

# Pins definitions
btn pin = 16

# Set up pins
GPIO.setmode (GPIO.BCM)
GPIO.setup (btn pin, GPIO.IN)

N = 10
# If button is pushed, light up LED
Ltry:

for x in range(N) :
1f GPIO.input (btn pin):
print ("Button Released")
else:
print ("Button Pressed")
time.sleep (1)

# When you press ctrl+c, this will be
called
finally:

GPIO.cleanup ()



Button Example3

Thonny - /home/pi/Documents/button_ex3.py @ 15:11

File Edit View Run Tools Help

s OB HEEO O

button_ex.py 2 — Run current script  IWENEROE 4 ‘ Assistant %

1 dimport time 1 ) 1
2 import RPi.GPIO as GPIO The code in

3 button_ex3.py looks
4 # Pins definitions good

5 btn_pin = 16 If it is not working as it
6 ) should, then consider
/| # Set up pins using some general
& GPIO.setmode(GPIO.BCM) debugging techniques.
9 GPIO.setup(btn_pin, GPIO.IN) )

10 Was it helpful or.
11 N = 10 confusing?
12

13 # If button is pushed, light up LED

14 try:

15 for x in range(N):

16 if GPIO.input(btn_pin):

17 print("Button Released")

18 else:

19 print("Button Pressed")

20 time.sleep(1)

21

22 # When you press ctrl+c, this will be called

23 finally:

24 GPIO.cleanup()

Shell x |

DULLUII FIESSEU I~

Button Released

Button Pressed

Button Pressed

Button Pressed

Button Pressed

Button Released

Python 3.7.3



Pull-down Resistor

We could also have wired according to a “Pull-down” Resistor

False/Low True/High
+3.3/5V +3.3/5V

Switch \I Switch |

Open Closed f
o )

We Push the Button

Resistor I Resistor I

GND GND



Button + LED Example

from gpiozero import LED, Button
from time import sleep

pin btn = 16

button = Button (pin btn)
pin led = 23

led = LED(pin_ led)

while True:
if button.is pressed:
led.on ()
else:
led.off ()

sleep (1)




Button + LED Example

import time
import RPi.GPIO as GPIO

# Pin definitions
led pin = 23
btn pin = 16

# Suppress warnings
GPIO.setwarnings (False)

# Use "GPIO" pin numbering
GPIO.setmode (GPIO.BCM)

# Set Button pin as input
GPIO.setup (btn pin, GPIO.IN)
# Set LED pin as output
GPIO.setup (led pin, GPIO.OUT)

# Blink forever
while True:
if GPIO.input (btn pin) :
GPIO.output (led pin, GPIO.LOW) # Turn LED off

else:
GPIO.output (led pin, GPIO.HIGH) # Turn LED on

time.sleep (1)



https://www.halvorsen.blog

SPI

Serial Peripheral Interface (SPI)

Hans-Petter Halvorsen



SPI

» Serial Peripheral Interface (SPI)

* SPlis an interface to communicate with
different types of electronic components
like Sensors, Analog to Digital Converts
(ADC), etc. that supports the SPI
interface

* Thousands of different Components and
Sensors supports the SPI interface

https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/



https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/

Access SPl on Raspberry Pi

You need to Enable SPI on the Raspberry Pi

Raspberry Pi Configuration

System Display Interfaces | Performance | Localisation
Camera: e Enable Disable
SSH: Enable e Disable
VNC: Enable e Disable
SPI: e Enable Disable
12C: e Enable Disable
Serial Port: e Enable Disable
Serial Console: e Enable Disable
1-Wire: e Enable Disable
Remote GPIO: Enable e Disable

Cancel OK



SPI Interface

SPI devices communicate in full duplex mode using a master-slave architecture with a
single master

Raspberry Pi SPI'ADC, SPI Sensor, etc.

>

The SPI bus specifies four logic signals:

* SCLK: Serial Clock (output from master)

* MOSI: Master Out Slave In (data output from master)

* MISO: Master In Slave Out (data output from slave)

* CE (often also called SS - Slave Select): Chip Select (often active low, output from master)



SPI Wiring on Raspberry Pi

GPIO 40 pins Connector [ A
3V3 power o (1 )(2) o 5V power
GPIO 2 (SDA) o (3)(4) o 5V power
GPIO 3 (SCL) o (5)(6) o Ground
GPIO 4 (GPCLKO) o (7)(s) o GPIO 14 (TXD)
Ground o (9)(10) o GPIO 15 (RXD)
GPIO 17 © (11)(12) o GPIO 18 (PCM_CLK)
GPIO 27 o (13)(14) o Ground
GPIO 22 o (15)(16) o GPIO 23
er o (17)(19) o GPIO 24
GPIO 10 (MOS)l) © (19)(20) o Ground
GPIO 9 (MIS$) o DD o_GPIO
GPIO 11 (SCLK) © ® D . EO)
GrowAd o DD o GPIO 7 (CE1)
GPIO 0 (ID_SD) o (27)(28) o GPIO 1 (ID_SC)
GPIO5 o (29)(30) o Ground
GPIO6 o (G1)(G2) o GPIO 12 (PWMO)
GPIO 13 (PWM1) o (33)(34) o Ground
GPIO 19 (PCM_FS) o (35)(3¢) o GPIO16
GPIO 26 o (37)(38) o GPIO 20 (PCM_DIN)
Ground o (39)(40) o GPIO 21 (PCM_DOUT)




https://www.halvorsen.blog

ADC

Analog to Digital Converter

Hans-Petter Halvorsen



ADC

 The Raspberry Pi has only Digital pins on the
GPIO connector

* |f you want to use an Analog electric
component or an Analog Sensor together with
Raspberry Pi, you need to connect it through
an external ADC chip

* ADC - Analog to Digital Converter

https://en.wikipedia.org/wiki/Analog-to-digital converter



https://en.wikipedia.org/wiki/Analog-to-digital_converter

MCP3002 ADC chip

The MCP3002 is a 10-bit analog to digital converter with 2 channels (0-1).
The MCP3002 uses a SPI Interface

CS/ISHDN[]1 ~ 8 [ Vpp/Vrer
=
CHOC]2 @ 7 [JCLK
CH1[]3 § 6 [ Doyt
VSS 4 N ) DIN

http://ww1.microchip.com/downloads/en/DeviceDoc/21294E.pdf

https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-
raspberry-pi/experiment-3-spi-and-analog-input



https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-3-spi-and-analog-input
http://ww1.microchip.com/downloads/en/DeviceDoc/21294E.pdf

5 a s

T | CSI/SHDN ] 1 " 8 [ Vpp/Vrer

T CHO [ 2 § 7 [0 CLK
CH13 &8 6 [ Dgyr
Vgg L] 4 S 5 HE

https://sites.google.com/a/joekamphaus.net/raspberry-pi-spi-interface-to-mcp3002/



https://sites.google.com/a/joekamphaus.net/raspberry-pi-spi-interface-to-mcp3002/

Raspberry Pi GPIO Pins

MOSI GPIO 10 (Pin 19)
MISO GPIO 9 (Pin 21)
SCLK GPIO 11 (Pin 23)
GND(Pin 25)

Wiring

+5V (Pin 2)
- -

PIO 8 (Pin 24)




GPIO Zero and MCP3002

gpiozero.MCP3002 (channel=0, differential=False, max voltage=3.3, **spli args)

channel

The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the MCP3004/3204/3302
have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by the channel attribute) is
read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for example,
when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices operating
in differential mode).

https://gpiozero.readthedocs.io/en/stable/api spi.html



https://gpiozero.readthedocs.io/en/stable/api_spi.html

Read Data from ADC

For test purpose we start by wiring a 1.5V Battery to the CHO (+) and CH1(-) pins on the ADC

Note! WE have set differential=True (meaning CHO is “+“ and CH1 is “-“)

from gpiozero import MCP3002
from time import sleep

adc = MCP3002 (channel=0, differential=True
1.5V Battery ( )

ADC N = 20

for x in range(N) :
adcdata = adc.value #Value between 0 and 1
#print (adcdata)
voltvalue = adcdata * 5 #Value between 0 and 5V
print (voltvalue)
sleep (1)

.

CS/SHDN [

=

[]
A WODN
200€dOW




https://www.halvorsen.blog

TMP36

Temperature Sensor

Hans-Petter Halvorsen



TMP36 Temperature Sensor

A Temperature sensor like TM36 use a
solid-state technique to determine the
temperature.

They use the fact as temperature
increases, the voltage across a diode

increases at a known rate.
2.7-5.5V in ¢ Ground

Analog voltage out

https://learn.adafruit.com/tmp36-temperature-sensor



https://learn.adafruit.com/tmp36-temperature-sensor

OUTPUT VOLTAGE (V)

T
1.8  —%-
s Vai e
/|
1.4
1.2 / /\\b -~
1.0
0.8 > a
0.6 // //
0.4 A~
| [
0.2 //
(150 -25 o 25 50 75 100 125
TEMPERATURE (°C)
This gives:
25205 (x — 0.75)
—25=——7"—7-(x—0.
Y 1-0.75

Then we get the following formula:

y = 100x — 50

TMP36 Temperature Sensor

Convert form Voltage (V) to degrees Celsius

From the Datasheet we have:

(xl,yl) = (075V, ZSOC)
(eryZ) = (1V'500C)

There is a linear relationship between
Voltage and degrees Celsius:
y=ax+b

We can find a and b using the following
known formula:

Y2 — V1
X2 —Xq

y—Y1= (x —x1)



Measure Temperature with an ADC

from gpiozero import MCP3002
from time import sleep

TMP36 Temperature Sensor

S

Wire a TMP36 temperature
sensor to the first channel of an
MCP3002 analog to digital
converter and the other pins to
+5V and GND

adc

N =

for

= MCP3002 (channel=0, differential=False)
10

X 1n range (N) :
adcdata = adc.value #Value between 0 and 1
#print (adcdata)

voltvalue = adcdata * 5 #Value between 0V and 5V
#print (voltvalue)

tempC = 100*voltvalue-50 #Temperature in Celsius
tempc = round (tempC, 1)
print (tempC)

sleep (1)



https://www.halvorsen.blog c

ThingSpeak

Hans-Petter Halvorsen



ThingSpeak

ThingSpeak is an l1oT analytics platform service that lets you collect and
store sensor data in the cloud and develop Internet of Things
applications.

The ThingSpeak service also lets you perform online analysis and act on
your data. Sensor data can be sent to ThingSpeak from any hardware
that can communicate using a REST API

ThingSpeak has a Web Service (REST API) that lets you collect and store
sensor data in the cloud and develop Internet of Things applications (it
also has MIQTT API).

https://thingspeak.com

Python Library for ThingSpeak: https://pypi.org/project/thingspeak/



https://thingspeak.com/
https://pypi.org/project/thingspeak/

ThingSpeak

=

DATA AGGREGATION

ALGORITHM DEVELOPMENT
SENSOR ANALYTICS

o AND ANALYTICS

- L1ThingSpeak-

0 MATLAB
N

% 0 I

- O Aul

D

— SMART CONNECTED DEVICES g ;L

=

T




ThingSpeak Write

import thingspeak
import time

channel 1id = XXXXXX
write key = "XXXXXXXXXXXXXXXXX"

channel = thingspeak.Channel (id=channel id, api key=write key)

N = 10
for x in range(N) :
temperature = 24
response = channel.update({'fieldl': temperature})

time.sleep (15)

A Free ThingSpeak Channel can
https://thingspeak.readthedocs.io/en/latest/api.html only be updated every 15 sec



https://thingspeak.readthedocs.io/en/latest/api.html

Write TMP36 Data

import thingspeak
import time
from gpiozero import MCP3002

A Free ThingSpeak Channel can
only be updated every 15 sec

adc = MCP3002 (channel=0, differential=False)

channel_id = XXXXXXX

write key 1D:9:9:9:9:9:9:9:9.9:9.9:9.9:9.0:9.0: 4

channel = thingspeak.Channel (id=channel id, api key=write key)

N = 10
for x in range (N) :
#Get Sensor Data

adcdata = adc.value #Scaled Value between 0 and 1
voltvalue = adcdata * 5 # Value between 0V and 5V

tempC = 100*voltvalue-50 # Temperature in Celsius
tempC = round (tempC, 1)
print (tempC)

#Write to ThingSpeak
response = channel.update({'fieldl': tempC})
time.sleep (15)



Write TMP36 Data

Here we see the Temperature Data in ThingSpeak:

Field 1 Chart =z o &

Office Temperature

=)
2 22
=
~
—
@
o
1S
@
—
S 20
£
o
13:50 13:51 13:52 13:53
Date

ThingSpeak.com



ThingSpeak Read

import thingspeak

channel id = xXxXXxXxXX
read key = "XXXXXXXXXXXXXXXX"

channel = thingspeak.Channel (id=channel 1d, api key=read key)

#data = channel.get ({})
data = channel.get field({”fieldl"})

print (data)

https://thingspeak.readthedocs.io/en/latest/api.html



https://thingspeak.readthedocs.io/en/latest/api.html

Additional Python Resources

Python .
P : ‘ Python for Science Python for Control
rogramming : : y
and Engineerin , ,
Hans-Petter Halvorsen g g Englneerlng Python for SOftware
Hans-Petter Halvorsen Deve |0pment
Hans-Petter Halvorsen
° ® Hans-Petter Halvorsen
C
o A Python Software Development
https://www.halvorsen.blog

https://www.halvorsen.blog
https://www.halvorsen.blog

https://www.halvorsen.blog

https://www.halvorsen.blog/documents/programming/python/



https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway

WWW.uUusn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog



http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

