
Raspberry Pi
GPIO with Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• Overview of GPIO
• LED
• PWM
• Push Button/Switch
• ADC (Analog to Digital Converter)
• TMP36
• ThingSpeak (Save Data to a Cloud Service)

Contents

Raspberry Pi

SD Card
(the Back)

GPIO Pins

micro HDMI x 2Power Supply (USB C)

Ethernet

USB A x 4
Camera

Connector

Raspberry PI GPIO

Hans-Petter Halvorsen

https://www.halvorsen.blog

GPIO

A powerful feature of the Raspberry Pi is the GPIO (general-purpose input/output) pins.
The Raspberry Pi has a 40-pin GPIO header as seen in the image

The GPIO pins are Digital Pins which are either True
(+3.3V) or False (0V). These can be used to turn on/off
LEDs, etc.
The Digital Pins can be either Output or Input.
In addition, some of the pins also offer some other
Features:
• PWM (Pulse Width Modulation)
Digital Buses (for reading data from Sensors, etc.):
• SPI
• I2C

GPIO Features

GP
IO

GPIO with Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

• The GPIO Zero Python Library can be used to communicate
with GPIO Pins

• The GPIO Zero Python Library comes preinstalled with the
Raspberry Pi OS (so no additional installation is necessary)

Resources:
• https://www.raspberrypi.org/documentation/usage/gpio/p

ython/
• https://pypi.org/project/gpiozero/
• https://gpiozero.readthedocs.io/en/stable/
• https://gpiozero.readthedocs.io/en/stable/recipes.html

GPIO Zero

https://www.raspberrypi.org/documentation/usage/gpio/python/
https://pypi.org/project/gpiozero/
https://gpiozero.readthedocs.io/en/stable/
https://gpiozero.readthedocs.io/en/stable/recipes.html

RPi.GPIO
• Rpi.GPIO is a module controlling the GPIO pins on the

Raspberry Pi
• RPi.GPIO is a more “low-level“ Python Library than

GPIO Zero. Actually, GPIO Zero is using RPi.GPIO
• The RPi.GPIO Python Library comes preinstalled with

the Raspberry Pi OS (so no additional installation is
necessary)

https://pypi.org/project/RPi.GPIO/

https://pypi.org/project/RPi.GPIO/

LED

Hans-Petter Halvorsen

https://www.halvorsen.blog

Necessary Equipment
• Raspberry Pi
• Breadboard
• LED
• Resistor, 𝑅 = 270Ω
• Wires (Jumper Wires)

Setup and Wiring

LED Example

GPIO16 (Pin 36)

GND (Pin 32)

Ra
sp

be
rr

y
Pi

 G
PI

O
 P

in
s

Breadboard

LED

R=270Ω

LED Example
from gpiozero import LED
from time import sleep

pin = 16
led = LED(pin)

while True:
led.on()
sleep(1)
led.off()
sleep(1)

https://www.raspberrypi.org/documentation/usage/gpio/python/

This Example “Runs for ever“

https://www.raspberrypi.org/documentation/usage/gpio/python/

LED Example

LED Example
from gpiozero import LED
from time import sleep

pin = 16
led = LED(pin)

N = 10
for x in range(N):

led.on()
sleep(1)
led.off()
sleep(1)

This example turns a LED on/off 10 times

PWM

Hans-Petter Halvorsen

https://www.halvorsen.blog

Pulse Width Modulation

PWM
PWM is a digital (i.e., square wave) signal that oscillates according to a given frequency and
duty cycle.
The frequency (expressed in Hz) describes how often the output pulse repeats.
The period is the time each cycle takes and is the inverse of frequency.
The duty cycle (expressed as a percentage) describes the width of the pulse within that
frequency window.

You can adjust the duty cycle
to increase or decrease the
average "on" time of the
signal. The following diagram
shows pulse trains at 0%,
25%, and 100% duty:

Controlling LED Brightness using PWM
• We've seen how to turn an LED on and off, but how do

we control its brightness levels?
• An LED's brightness is determined by controlling the

amount of current flowing through it, but that requires a
lot more hardware components.

• A simple trick we can do is to flash the LED faster than
the eye can see!

• By controlling the amount of time the LED is on versus
off, we can change its perceived brightness.

• This is known as Pulse Width Modulation (PWM).
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-1-digital-input-and-output

https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-1-digital-input-and-output

Controlling LED Brightness using PWM

https://www.electronicwings.com/raspberry-pi/raspberry-pi-pwm-generation-using-python-and-c

Below we see how we can use PWM to control the brightness of a LED

https://www.electronicwings.com/raspberry-pi/raspberry-pi-pwm-generation-using-python-and-c

PWM as “Analog Out“

The Raspberry Pi has
no real Analog Out
pins, but we can use a
PWM pin.
PWM can be used to
control brightness of a
LED, control the speed
of a Fan, control a DC
Motor, etc.

GPIO Zero from time import sleep
import numpy as np
from gpiozero import PWMLED

pin = 23
led = PWMLED(pin)

start = 0
stop = 1
step = 0.1
level = np.arange(start, stop, step)

for x in level:
led.value = x
sleep(1)

led.off()

PWM

RPi.GPIO
import time
import RPi.GPIO as GPIO

Pin definitions
led_pin = 23

Use "GPIO" pin numbering
GPIO.setmode(GPIO.BCM)

Set LED pin as output
GPIO.setup(led_pin, GPIO.OUT)

Initialize pwm object with 50 Hz and 0% duty cycle
pwm = GPIO.PWM(led_pin, 50)
pwm.start(0)

pwm.ChangeDutyCycle(10)
time.sleep(2)
pwm.ChangeDutyCycle(50)
time.sleep(2)
pwm.ChangeDutyCycle(90)
time.sleep(2)

Stop, cleanup, and exit
pwm.stop()
GPIO.cleanup()

PWM

Push Button

Hans-Petter Halvorsen

https://www.halvorsen.blog

Necessary Equipment
• Raspberry Pi
• Breadboard
• Push Button
• LED
• Resistors, 𝑅 = 270Ω, 𝑅 = 10𝑘Ω
• Wires (Jumper Wires)

Setup and Wiring

Push Button/Switch
• Pushbuttons or switches connect two

points in a circuit when you press them.
• You can use it to turn on a Light when

holding down the button, etc.

+

-

Battery

Light

Switch (On/Off)

Button Setup
Using external Pull-up Resistor

GND

GPIO 16

+3.3V

𝑅 = 10𝑘Ω

Ra
sp

be
rr

y
Pi

 G
PI

O
 P

in
s

Pull-up Resistor
• When the pushbutton is open (unpressed)

there is a connection between 3.3/5V and
the DI pin.

• This means the default state is True (High).
• When the button is closed (pressed), the

state goes to False (Low).

+5V

GND

DI

Switch

Resistor

Pull-up Resistor
+3.3/5V

GND

DI

Resistor

+3.3/5V

GND

DI

Resistor

True/High False/Low

Switch
Open

Switch
Closed

We Push the Button

Pull-down/Pull-up Resistor
Why do we need a pull-up or pull-down resistor in the
circuit?
• If you disconnect the digital I/O pin from everything, it

will behave in an irregular way.
• This is because the input is "floating" - that is, it will

randomly return either HIGH or LOW.
• That's why you need a pull-up or pull-down resistor in

the circuit.

Button Example
from gpiozero import Button
from time import sleep
pin = 16
button = Button(pin)

while True:
if button.is_pressed:

print("Pressed")
else:

print("Released")
sleep(1)

https://www.raspberrypi.org/documentation/usage/gpio/python/

In GPIO Zero, the default
configuration for a button is pull-up

https://www.raspberrypi.org/documentation/usage/gpio/python/

Button Example

In GPIO Zero, the default
configuration for a button is pull-up

We have wired according to pull-up.
This means:
Button Pressed -> True
Button Not Pressed -> False

Button Ex.2 import time
import RPi.GPIO as GPIO

Pins definitions
btn_pin = 16

Set up pins
GPIO.setmode(GPIO.BCM)
GPIO.setup(btn_pin, GPIO.IN)

If button is pushed, light up LED
try:

while True:
if GPIO.input(btn_pin):

print("Button Released")
else:

print("Button Pressed")
time.sleep(1)

When you press ctrl+c, this will be called
finally:

GPIO.cleanup()

Here is the RPi.GPIO Python Library used

In RPi.GPIO, the default configuration
for a button is pull-down

We have wired according to pull-up.
This means:
Button Pressed -> False
Button Not Pressed -> True

Button Example2

Button Ex.3
import time
import RPi.GPIO as GPIO

Pins definitions
btn_pin = 16

Set up pins
GPIO.setmode(GPIO.BCM)
GPIO.setup(btn_pin, GPIO.IN)

N = 10
If button is pushed, light up LED
try:

for x in range(N):
if GPIO.input(btn_pin):

print("Button Released")
else:

print("Button Pressed")
time.sleep(1)

When you press ctrl+c, this will be
called
finally:

GPIO.cleanup()

Button Example3

Pull-down Resistor

+3.3/5V

GND

DI

Switch
Open

Resistor

+3.3/5V

GND

DI

Resistor

True/HighFalse/Low

Switch
Closed

We Push the Button

We could also have wired according to a “Pull-down“ Resistor

Button + LED Example
from gpiozero import LED, Button
from time import sleep

pin_btn = 16
button = Button(pin_btn)
pin_led = 23
led = LED(pin_led)

while True:
if button.is_pressed:

led.on()
else:

led.off()
sleep(1)

Button + LED Example
import time
import RPi.GPIO as GPIO

Pin definitions
led_pin = 23
btn_pin = 16

Suppress warnings
GPIO.setwarnings(False)

Use "GPIO" pin numbering
GPIO.setmode(GPIO.BCM)
Set Button pin as input
GPIO.setup(btn_pin, GPIO.IN)
Set LED pin as output
GPIO.setup(led_pin, GPIO.OUT)

Blink forever
while True:

if GPIO.input(btn_pin):
GPIO.output(led_pin, GPIO.LOW) # Turn LED off

else:
GPIO.output(led_pin, GPIO.HIGH) # Turn LED on

time.sleep(1)

SPI

Hans-Petter Halvorsen

https://www.halvorsen.blog

Serial Peripheral Interface (SPI)

SPI
• Serial Peripheral Interface (SPI)
• SPI is an interface to communicate with

different types of electronic components
like Sensors, Analog to Digital Converts
(ADC), etc. that supports the SPI
interface
• Thousands of different Components and

Sensors supports the SPI interface
https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/

https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/

Access SPI on Raspberry Pi
You need to Enable SPI on the Raspberry Pi

SPI Interface

SCLK
MOSI
MISO

CE

SPI Master SPI Slave

SCLK
MOSI
MISO
CE

SPI devices communicate in full duplex mode using a master-slave architecture with a
single master

Raspberry Pi SPI ADC, SPI Sensor, etc.

The SPI bus specifies four logic signals:
• SCLK: Serial Clock (output from master)
• MOSI: Master Out Slave In (data output from master)
• MISO: Master In Slave Out (data output from slave)
• CE (often also called SS - Slave Select): Chip Select (often active low, output from master)

SPI Wiring on Raspberry Pi
GPIO 40 pins Connector

ADC

Hans-Petter Halvorsen

https://www.halvorsen.blog

Analog to Digital Converter

ADC

https://en.wikipedia.org/wiki/Analog-to-digital_converter

• The Raspberry Pi has only Digital pins on the
GPIO connector

• If you want to use an Analog electric
component or an Analog Sensor together with
Raspberry Pi, you need to connect it through
an external ADC chip

• ADC – Analog to Digital Converter

https://en.wikipedia.org/wiki/Analog-to-digital_converter

MCP3002 ADC chip
The MCP3002 is a 10-bit analog to digital converter with 2 channels (0-1).

https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-
raspberry-pi/experiment-3-spi-and-analog-input

http://ww1.microchip.com/downloads/en/DeviceDoc/21294E.pdf

The MCP3002 uses a SPI Interface

https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-3-spi-and-analog-input
http://ww1.microchip.com/downloads/en/DeviceDoc/21294E.pdf

Wiring

https://sites.google.com/a/joekamphaus.net/raspberry-pi-spi-interface-to-mcp3002/

https://sites.google.com/a/joekamphaus.net/raspberry-pi-spi-interface-to-mcp3002/

Wiring
Ra

sp
be

rr
y

Pi
 G

PI
O

 P
in

s
+5V (Pin 2)

SCLK GPIO 11 (Pin 23)
GND(Pin 25)

MISO GPIO 9 (Pin 21)
MOSI GPIO 10 (Pin 19)

CS GPIO 8 (Pin 24)

GPIO Zero and MCP3002
gpiozero.MCP3002(channel=0, differential=False, max_voltage=3.3, **spi_args)

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the MCP3004/3204/3302
have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by the channel attribute) is
read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for example,
when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices operating
in differential mode).

https://gpiozero.readthedocs.io/en/stable/api_spi.html

https://gpiozero.readthedocs.io/en/stable/api_spi.html

Read Data from ADC

from gpiozero import MCP3002
from time import sleep

adc = MCP3002(channel=0, differential=True)

N = 20

for x in range(N):
adcdata = adc.value #Value between 0 and 1
#print(adcdata)
voltvalue = adcdata * 5 #Value between 0 and 5V
print(voltvalue)
sleep(1)

For test purpose we start by wiring a 1.5V Battery to the CH0 (+) and CH1(-) pins on the ADC

1.5V Battery

ADC

Note! WE have set differential=True (meaning CH0 is “+“ and CH1 is “-“)

TMP36

Hans-Petter Halvorsen

https://www.halvorsen.blog

Temperature Sensor

TMP36 Temperature Sensor

https://learn.adafruit.com/tmp36-temperature-sensor

A Temperature sensor like TM36 use a
solid-state technique to determine the
temperature.

They use the fact as temperature
increases, the voltage across a diode
increases at a known rate.

https://learn.adafruit.com/tmp36-temperature-sensor

TMP36 Temperature Sensor
Convert form Voltage (V) to degrees Celsius

From the Datasheet we have:

(𝑥!, 𝑦!) = (0.75𝑉, 25°𝐶)
(𝑥", 𝑦") = (1𝑉, 50°𝐶)

There is a linear relationship between
Voltage and degrees Celsius:

𝑦 = 𝑎𝑥 + 𝑏

We can find a and b using the following
known formula:

𝑦 − 𝑦! =
𝑦" − 𝑦!
𝑥" − 𝑥!

(𝑥 − 𝑥!)

This gives:

𝑦 − 25 =
50 − 25
1 − 0.75 (𝑥 − 0.75)

Then we get the following formula:
𝑦 = 100𝑥 − 50

Measure Temperature with an ADC
from gpiozero import MCP3002
from time import sleep

adc = MCP3002(channel=0, differential=False)

N = 10

for x in range(N):
adcdata = adc.value #Value between 0 and 1
#print(adcdata)

voltvalue = adcdata * 5 #Value between 0V and 5V
#print(voltvalue)

tempC = 100*voltvalue-50 #Temperature in Celsius
tempc = round(tempC,1)
print(tempC)

sleep(1)

Wire a TMP36 temperature
sensor to the first channel of an
MCP3002 analog to digital
converter and the other pins to
+5V and GND

TMP36 Temperature Sensor

ThingSpeak

Hans-Petter Halvorsen

https://www.halvorsen.blog

ThingSpeak
• ThingSpeak is an IoT analytics platform service that lets you collect and

store sensor data in the cloud and develop Internet of Things
applications.

• The ThingSpeak service also lets you perform online analysis and act on
your data. Sensor data can be sent to ThingSpeak from any hardware
that can communicate using a REST API

• ThingSpeak has a Web Service (REST API) that lets you collect and store
sensor data in the cloud and develop Internet of Things applications (it
also has MQTT API).

• https://thingspeak.com
• Python Library for ThingSpeak: https://pypi.org/project/thingspeak/

https://thingspeak.com/
https://pypi.org/project/thingspeak/

ThingSpeak

ThingSpeak Write
import thingspeak
import time

channel_id = xxxxxx
write_key = "xxxxxxxxxxxxxxxxx"

channel = thingspeak.Channel(id=channel_id, api_key=write_key)

N = 10
for x in range(N):

temperature = 24
response = channel.update({'field1': temperature})
time.sleep(15)

A Free ThingSpeak Channel can
only be updated every 15 sechttps://thingspeak.readthedocs.io/en/latest/api.html

https://thingspeak.readthedocs.io/en/latest/api.html

W
rit

e
TM

P3
6

Da
ta

import thingspeak
import time
from gpiozero import MCP3002

adc = MCP3002(channel=0, differential=False)

channel_id = xxxxxxx
write_key = ”xxxxxxxxxxxxxxxxxx”

channel = thingspeak.Channel(id=channel_id, api_key=write_key)

N = 10
for x in range(N):

#Get Sensor Data
adcdata = adc.value #Scaled Value between 0 and 1
voltvalue = adcdata * 5 # Value between 0V and 5V
tempC = 100*voltvalue-50 # Temperature in Celsius
tempC = round(tempC,1)
print(tempC)

#Write to ThingSpeak
response = channel.update({'field1': tempC})
time.sleep(15)

A Free ThingSpeak Channel can
only be updated every 15 sec

Write TMP36 Data
Here we see the Temperature Data in ThingSpeak:

ThingSpeak Read
import thingspeak

channel_id = xxxxxx
read_key = ”xxxxxxxxxxxxxxxx"

channel = thingspeak.Channel(id=channel_id, api_key=read_key)

#data = channel.get({})
data = channel.get_field({”field1"})

print(data)

https://thingspeak.readthedocs.io/en/latest/api.html

https://thingspeak.readthedocs.io/en/latest/api.html

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

